A false positive is an error in binary classification in which a test result incorrectly indicates the presence of a condition (such as a disease when the disease is not present), while a false negative is the opposite error, where the test result incorrectly indicates the absence of a condition when it is actually present. These are the two kinds of errors in a binary test.
而市面上的静态分析,大多数都是sound的。
Static Analysis: ensure(or get close to)soundness, while making good trade-offs between analysis precision and analysis speed.
Abstraction + Over-approximation
静态分析可以分为may analysis和must analysis。 may analysis可以用两个单词来概括,分别是abstraction和over-approximation abstraction是may analysis和must analysis两者公有的特性,既然over-approximation是may analysis的特性,那参考上图,under-approximation就是must-analysis的特性呗。